Spring Cloud Microservices at Pivotal Platform

Imagine you have multiple microservices running on different machines as multiple instances. It seems natural to think about the tools that helps you in the process of monitoring and managing all of them. If we add that our microservices are created based on the Spring Cloud framework obviously seems we should look at the Pivotal platform. Here is figure with platform’s architecture download from the main Pivotal’s site.

PVDI-Microservices-Architecture

Although Pivotal Platform can run applications written in many languages it has the best support for Spring Cloud Services and Netflix OSS tools like you can see in the figure above. From the possibilities offered by Pivotal we can take advantage of three ways.

Pivotal Cloud Foundry – solution can be ran on public IaaS or private cloud like AWS, Google Cloud Platform, Microsoft Azure, VMware vSphere, OpenStack.

Pivotal Web Services – hosted cloud-native platform available at pivotal.io site.

PCF Dev – the instance which can be run locally as a a single virtual machine. It offers the opportunity to develop apps using an offline environment which basic services installed like Spring Cloud Services (SCS), MySQL, Redis databases and RabbitMQ broker. If you want to run it locally with SCS you need more than 6GB RAM free.

As a Spring Cloud Services there are available Circuit Breaker (Hystrix), Service Registry (Eureka) and standard Spring Configuration Server based on git configuration.

scs

That’s all I wanted to say about the theory. Let’s move on to practice. On the Pivotal website we have detailed materials on how to set it up, create and deploy a simple microservice based on Spring Cloud solutions. In this article I will try to present the essence collected from these descriptions based on one of my standard examples from the previous posts. As always sample source code is available on GitHub. If you are interested in detailed description of the sample application, microservices and Spring Cloud read my previous articles:

Part 1: Creating microservice using Spring Cloud, Eureka and Zuul

Part 3: Creating Microservices: Circuit Breaker, Fallback and Load Balancing with Spring Cloud

If you have a lot of free RAM you can install PCF Dev on your local workstation. You need to have Virtual Box installed. Then download and install Cloud Foundry Command Line Interface (CF CLI) and PCF Dev. All is described here. Finally you can run command below and take a small break for coffee. Virtual machine needs to downloaded and started.

cf dev start -s scs

For those who do not have RAM enough (like me) there is Pivotal Web Services platform. It is available here. Before use it you have to register on Pivotal site. The rest of the article is identical for both options.
In comparison to previous examples of Spring Cloud based microservices, we need to make some changes. There is one additional dependency inside every microservice’s pom.xml.

<properties>
	...
	<spring-cloud-services.version>1.4.1.RELEASE</spring-cloud-services.version>
	<spring-cloud.version>Dalston.RELEASE</spring-cloud.version>
</properties>

<dependencies>
	<dependency>
		<groupId>io.pivotal.spring.cloud</groupId>
		<artifactId>spring-cloud-services-starter-service-registry</artifactId>
	</dependency>
	...
</dependencies>

<dependencyManagement>
	<dependencies>
		<dependency>
			<groupId>org.springframework.cloud</groupId>
			<artifactId>spring-cloud-dependencies</artifactId>
			<version>${spring-cloud.version}</version>
			<type>pom</type>
			<scope>import</scope>
		</dependency>
		<dependency>
			<groupId>io.pivotal.spring.cloud</groupId>
			<artifactId>spring-cloud-services-dependencies</artifactId>
			<version>${spring-cloud-services.version}</version>
			<type>pom</type>
			<scope>import</scope>
		</dependency>
	</dependencies>
</dependencyManagement>

We also use Maven Cloud Foundry plugin cf-maven-plugin for application deployment on Pivotal platform. Here is sample for account-service. We run two instances of that microservice with max memory 512MB. Our application name is piomin-account-service.

<plugin>
	<groupId>org.cloudfoundry</groupId>
	<artifactId>cf-maven-plugin</artifactId>
	<version>1.1.3</version>
	<configuration>
		<target>http://api.run.pivotal.io</target>
		<org>piotrminkowski</org>
		<space>development</space>
		<appname>piomin-account-service</appname>
		<memory>512</memory>
		<instances>2</instances>
		<server>cloud-foundry-credentials</server>
	</configuration>
</plugin>

Don’t forget to add credentials configuration into Maven settings.xml file.

<server>
	<id>cloud-foundry-credentials</id>
	<username>piotr.minkowski@gmail.com</username>
	<password>***</password>
</server>

Now, when building sample application we to append cf:push command.

mvn clean install cf:push

Here is circuit breaker implementation inside customer-service.

@Service
public class AccountService {

	@Autowired
	private AccountClient client;

	@HystrixCommand(fallbackMethod = "getEmptyList")
	public List<Account> getAccounts(Integer customerId) {
		return client.getAccounts(customerId);
	}

	List<Account> getEmptyList(Integer customerId) {
		return new ArrayList<>();
	}

}

There is randomly generated delay on the account’s service side, so 25% of calls circuit breaker should be activated.

@RequestMapping("/accounts/customer/{customer}")
public List<Account> findByCustomer(@PathVariable("customer") Integer customerId) {
	logger.info(String.format("Account.findByCustomer(%s)", customerId));
	Random r = new Random();
	int rr = r.nextInt(4);
	if (rr == 1) {
		try {
			Thread.sleep(2000);
		} catch (InterruptedException e) {
			e.printStackTrace();
		}
	}
	return accounts.stream().filter(it -> it.getCustomerId().intValue() == customerId.intValue())
		.collect(Collectors.toList());
}

After successfully deploying application using Maven cf:push command we can go to Pivotal Web Services console available at https://console.run.pivotal.io/. Here are our two deployed services: two instances of piomin-account-service and one instance of piomin-customer-service.

pivotal-1

I have also activated Circuit Breaker and Service Registry from Marketplace.

pivotal-2

Every application need to be bound to service. To enable it select service, then expand Bound Apps overlap and select checkbox next to each service name.

pivotal-4

After this step applications needs to be restarted. It also can be be using web dashboard inside each service.

pivotal-5

Finally, all services are registered in Eureka and we can perform some tests using customer endpoint https://piomin-customer-service.cfapps.io/customers/{id}.

pivotal-4

Final words

With Pivotal solution we can easily deploy, scale and monitor our microservices. Deployment and scaling can be done using Maven plugin or via web dashboard. On Pivotal there are also available some services prepared especially for microservices needs like service registry, circuit breaker and configuration server. Pivotal is a competition for such solutions like Kubernetes which based on Docker containerization (more about this tools here). It is especially useful if you are creating a microservices based on Spring Boot and Spring Cloud frameworks.

Part 3: Creating Microservices: Circuit Breaker, Fallback and Load Balancing with Spring Cloud

Probably you read some articles about Hystrix and you know in what purpose it is used for. Today I would like to show you an example of exactly how to use it, which gives you the ability to combine with other tools from Netflix OSS stack like Feign and Ribbon. In this I assume that you have basic knowledge on topics such as microservices, load balancing, service discovery. If not I suggest you read some articles about it, for example my short introduction to microservices architecture available here: Part 1: Creating microservice using Spring Cloud, Eureka and Zuul. The code sample used in that article is also also used now. There is also sample source code available on GitHub. For the sample described now see hystrix branch, for basic sample master branch. 

Let’s look at some scenarios for using fallback and circuit breaker. We have Customer Service which calls API method from Account Service. There two running instances of Account Service. The requests to Account Service instances are load balanced by Ribbon client 50/50.

micro-details-1

Scenario 1

Hystrix is disabled for Feign client (1), auto retries mechanism is disabled for Ribbon client on local instance (2) and other instances (3). Ribbon read timeout is shorter than request max process time (4). This scenario also occurs with the default Spring Cloud configuration without Hystrix. When you call customer test method you sometimes receive full response and sometimes 500 HTTP error code (50/50).

ribbon:
  eureka:
    enabled: true
  MaxAutoRetries: 0 #(2)
  MaxAutoRetriesNextServer: 0 #(3)
  ReadTimeout: 1000 #(4)

feign:
  hystrix:
    enabled: false #(1)

Scenario 2

Hystrix is still disabled for Feign client (1), auto retries mechanism is disabled for Ribbon client on local instance (2) but enabled on other instances once (3). You always receive full response. If your request is received by instance with delayed response it is timed out after 1 second and then Ribbon calls another instance – in that case not delayed. You can always change MaxAutoRetries to positive value but gives us nothing in that sample.

ribbon:
  eureka:
    enabled: true
  MaxAutoRetries: 0 #(2)
  MaxAutoRetriesNextServer: 1 #(3)
  ReadTimeout: 1000 #(4)

feign:
  hystrix:
    enabled: false #(1)

Scenario 3

Here is not a very elegant solution to the problem. We set ReadTimeout on value bigger than delay inside API method (5000 ms).

ribbon:
  eureka:
    enabled: true
  MaxAutoRetries: 0
  MaxAutoRetriesNextServer: 0
  ReadTimeout: 10000

feign:
  hystrix:
    enabled: false

Generally configuration from Scenario 2 and 3 is right, you always get the full response. But in some cases you will wait more than 1 second (Scenario 2) or more than 5 seconds (Scenario 3) and delayed instance receives 50% requests from Ribbon client. But fortunately there is Hystrix – circuit breaker.

Scenario 4

Let’s enable Hystrix just by removing feign property. There is no auto retries for Ribbon client (1) and its read timeout (2) is bigger than Hystrix’s timeout (3). 1000ms is also default value for Hystrix timeoutInMilliseconds property. Hystrix circuit breaker and fallback will work for delayed instance of account service. For some first requests you receive fallback response from Hystrix. Then delayed instance will be cut off from requests, most of them will be directed to not delayed instance.

ribbon:
  eureka:
    enabled: true
  MaxAutoRetries: 0 #(1)
  MaxAutoRetriesNextServer: 0
  ReadTimeout: 2000 #(2)

hystrix:
  command:
    default:
      execution:
        isolation:
          thread:
            timeoutInMilliseconds: 1000 #(3)

Scenario 5

This scenario is a more advanced development of Scenario 4. Now Ribbon timeout (2) is lower than Hystrix timeout (3) and also auto retries mechanism is enabled (1) for local instance and for other instances (4). The result is same as for Scenario 2 and 3 – you receive full response, but Hystrix is enabled and it cuts off delayed instance from future requests.

ribbon:
  eureka:
    enabled: true
  MaxAutoRetries: 3 #(1)
  MaxAutoRetriesNextServer: 1 #(4)
  ReadTimeout: 1000 #(2)

hystrix:
  command:
    default:
      execution:
        isolation:
          thread:
            timeoutInMilliseconds: 10000 #(3)

I could imagine a few other scenarios. But the idea was just a show differences in circuit breaker and fallback when modifying configuration properties for Feign, Ribbon and Hystrix in application.yml.

Hystrix

Let’s take a closer look on standard Hystrix circuit breaker and  usage described in Scenario 4. To enable Hystrix in your Spring Boot application you have to following dependencies to pom.xml. Second step is to add annotation @EnableCircuitBreaker to main application class and also @EnableHystrixDashboard if you would like to have UI dashboard available.

<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-hystrix</artifactId>
</dependency>
<dependency>
	<groupId>org.springframework.cloud</groupId>
	<artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>
</dependency>

Hystrix fallback is set on Feign client inside customer service.

@FeignClient(value = "account-service", fallback = AccountFallback.class)
public interface AccountClient {

    @RequestMapping(method = RequestMethod.GET, value = "/accounts/customer/{customerId}")
    List<Account> getAccounts(@PathVariable("customerId") Integer customerId);

}

Fallback implementation is really simple. In this case I just return empty list instead of customer’s account list received from account service.

@Component
public class AccountFallback implements AccountClient {

	@Override
	public List<Account> getAccounts(Integer customerId) {
		List<Account> acc = new ArrayList<Account>();
		return acc;
	}

}

Now, we can perform some tests. Let’s start discovery service, two instances of account service on different ports (-DPORT VM argument during startup) and customer service. Endpoint for tests is /customers/{id}. There is also JUnit test class which sends multiple requests to this enpoint available in customer-service module pl.piomin.microservices.customer.ApiTest.

	@RequestMapping("/customers/{id}")
	public Customer findById(@PathVariable("id") Integer id) {
		logger.info(String.format("Customer.findById(%s)", id));
		Customer customer = customers.stream().filter(it -> it.getId().intValue()==id.intValue()).findFirst().get();
		List<Account> accounts =  accountClient.getAccounts(id);
		customer.setAccounts(accounts);
		return customer;
	}

I enabled Hystrix Dashboard on account-service main class. If you would like to access it call from your web browser http://localhost:2222/hystrix address and then type Hystrix’s stream address from customer-service http://localhost:3333/hystrix.stream. When I run test that sends 1000 requests to customer service about 20 (2%) of them were forwarder to delayed instance of account service, remaining to not delayed instance. Hystrix dashboard during that test is visible below. For more advanced Hystrix configuration refer to its documentation available here.

hystrix-1

In memory data grid with Hazelcast

In my previous article JPA caching with Hazelcast, Hibernate and Spring Boot I described an example illustrating Hazelcast usage as a solution for Hibernate 2nd level cache. One big disadvantage of that example was an ability by caching entities only by primary key. Some help was the opportunity to cache JPA queries by some other indices. But that did not solve the problem completely, because query could use already cached entities even if they matched the criteria. In that article I’m going to show you smart solution of that problem based on Hazelcast distributed queries.

hz1

Spring Boot has an build-in auto configuration for Hazelcast if such a library is available under application classpath and @Bean Config is declared.

	@Bean
	Config config() {
		Config c = new Config();
		c.setInstanceName("cache-1");
		c.getGroupConfig().setName("dev").setPassword("dev-pass");
		ManagementCenterConfig mcc = new ManagementCenterConfig().setUrl("http://192.168.99.100:38080/mancenter").setEnabled(true);
		c.setManagementCenterConfig(mcc);
		SerializerConfig sc = new SerializerConfig().setTypeClass(Employee.class).setClass(EmployeeSerializer.class);
		c.getSerializationConfig().addSerializerConfig(sc);
		return c;
	}

In the code fragment above we declared cluster name and password credentials, connection parameters to Hazelcast Management Center and entity serialization configuration. Entity is pretty simple – it has @Id and two fields for searching personId and company.

@Entity
public class Employee implements Serializable {

	private static final long serialVersionUID = 3214253910554454648L;

	@Id
	@GeneratedValue
	private Integer id;
	private Integer personId;
	private String company;

	public Integer getId() {
		return id;
	}

	public void setId(Integer id) {
		this.id = id;
	}

	public Integer getPersonId() {
		return personId;
	}

	public void setPersonId(Integer personId) {
		this.personId = personId;
	}

	public String getCompany() {
		return company;
	}

	public void setCompany(String company) {
		this.company = company;
	}

}

Every entity needs to have serializer declared if it is to be inserted and selected from cache. There are same default serializers available inside Hazelcast library, but I implemented the custom one for our sample. It is based on StreamSerializer and ObjectDataInput.

public class EmployeeSerializer implements StreamSerializer<Employee> {

	@Override
	public int getTypeId() {
		return 1;
	}

	@Override
	public void write(ObjectDataOutput out, Employee employee) throws IOException {
		out.writeInt(employee.getId());
		out.writeInt(employee.getPersonId());
		out.writeUTF(employee.getCompany());
	}

	@Override
	public Employee read(ObjectDataInput in) throws IOException {
		Employee e = new Employee();
		e.setId(in.readInt());
		e.setPersonId(in.readInt());
		e.setCompany(in.readUTF());
		return e;
	}

	@Override
	public void destroy() {
	}

}

There is also DAO interface for interacting with database. It has two searching methods and extends Spring Data CrudRepository.

public interface EmployeeRepository extends CrudRepository<Employee, Integer> {

	public Employee findByPersonId(Integer personId);
	public List<Employee> findByCompany(String company);

}

In this sample Hazelcast instance is embedded into the application. When starting Spring Boot application we have to provide VM argument -DPORT which is used for exposing service REST API. Hazelcast automatically detect other running member instances and its port will be incremented out of the box. Here’s REST @Controller class with exposed API.

@RestController
public class EmployeeController {

	private Logger logger = Logger.getLogger(EmployeeController.class.getName());

	@Autowired
	EmployeeService service;

	@GetMapping("/employees/person/{id}")
	public Employee findByPersonId(@PathVariable("id") Integer personId) {
		logger.info(String.format("findByPersonId(%d)", personId));
		return service.findByPersonId(personId);
	}

	@GetMapping("/employees/company/{company}")
	public List<Employee> findByCompany(@PathVariable("company") String company) {
		logger.info(String.format("findByCompany(%s)", company));
		return service.findByCompany(company);
	}

	@GetMapping("/employees/{id}")
	public Employee findById(@PathVariable("id") Integer id) {
		logger.info(String.format("findById(%d)", id));
		return service.findById(id);
	}

	@PostMapping("/employees")
	public Employee add(@RequestBody Employee emp) {
		logger.info(String.format("add(%s)", emp));
		return service.add(emp);
	}

}

@Service is injected into the EmployeeController. Inside EmployeeService there is an simple implementation of switching between Hazelcast cache instance and Spring Data DAO @Repository. In every find method we are trying to find data in the cache and in case it’s not there we are searching it in database and then putting found entity into the cache.

@Service
public class EmployeeService {

	private Logger logger = Logger.getLogger(EmployeeService.class.getName());

	@Autowired
	EmployeeRepository repository;
	@Autowired
	HazelcastInstance instance;

	IMap<Integer, Employee> map;

	@PostConstruct
	public void init() {
		map = instance.getMap("employee");
		map.addIndex("company", true);
		logger.info("Employees cache: " + map.size());
	}

	@SuppressWarnings("rawtypes")
	public Employee findByPersonId(Integer personId) {
		Predicate predicate = Predicates.equal("personId", personId);
		logger.info("Employee cache find");
		Collection<Employee> ps = map.values(predicate);
		logger.info("Employee cached: " + ps);
		Optional<Employee> e = ps.stream().findFirst();
		if (e.isPresent())
			return e.get();
		logger.info("Employee cache find");
		Employee emp = repository.findByPersonId(personId);
		logger.info("Employee: " + emp);
		map.put(emp.getId(), emp);
		return emp;
	}

	@SuppressWarnings("rawtypes")
	public List<Employee> findByCompany(String company) {
		Predicate predicate = Predicates.equal("company", company);
		logger.info("Employees cache find");
		Collection<Employee> ps = map.values(predicate);
		logger.info("Employees cache size: " + ps.size());
		if (ps.size() > 0) {
			return ps.stream().collect(Collectors.toList());
		}
		logger.info("Employees find");
		List<Employee> e = repository.findByCompany(company);
		logger.info("Employees size: " + e.size());
		e.parallelStream().forEach(it -> {
			map.putIfAbsent(it.getId(), it);
		});
		return e;
	}

	public Employee findById(Integer id) {
		Employee e = map.get(id);
		if (e != null)
			return e;
		e = repository.findOne(id);
		map.put(id, e);
		return e;
	}

	public Employee add(Employee e) {
		e = repository.save(e);
		map.put(e.getId(), e);
		return e;
	}

}

If you are interested in running sample application you can clone my repository on GitHub. In person-service module there is an example for my previous article about Hibernate 2nd cache with Hazelcast, in employee-module there is an example for that article.

Testing

Let’s start three instances of employee service on different ports using VM argument -DPORT. In the first figure visible in the beginning of article these ports are 2222, 3333 and 4444. When starting last third service’s instance you should see the fragment visible below in the application logs. It means that Hazelcast cluster of three members has been set up.

2017-05-09 23:01:48.127  INFO 16432 --- [ration.thread-0] c.h.internal.cluster.ClusterService      : [192.168.1.101]:5703 [dev] [3.7.7] 

Members [3] {
	Member [192.168.1.101]:5701 - 7a8dbf3d-a488-4813-a312-569f0b9dc2ca
	Member [192.168.1.101]:5702 - 494fd1ac-341b-451c-b585-1ad58a280fac
	Member [192.168.1.101]:5703 - 9750bd3c-9cf8-48b8-a01f-b14c915937c3 this
}

Here is picture from Hazelcast Management Center for two running members (only two members are available in the freeware version of Hazelcast Management Center).

hz-1.png

Then run docker containers with MySQL and Hazelcast Management Center.

docker run -d --name mysql -p 33306:3306 mysql
docker run -d --name hazelcast-mgmt -p 38080:8080 hazelcast/management-center:latest

Now, you could try to call endpoint http://localhost:/employees/company/{company} on all of your services. You should see that data is cached in the cluster and even if you call endpoint on different service it find entities put into the cache by different service. After several attempts my service instances put about 100k entities into the cache. Distribution between two Hazelcast members is 50% to 50%.

hz-2

Final Words

Probably we could implement smarter solution for the problem described in that article, but I just wanted to show you the idea. I tried to use Spring Data Hazelcast for that, but I’ve got a problem to run it on Spring Boot application. It has HazelcastRepository interface, which something similar to Spring Data CrudRepository but basing on cached entities in Hazelcast grid and also uses Spring Data KeyValue module. The project is not well document and like I said before it didn’t worked with Spring Boot so I decided to implement my simple solution 🙂

In my local environment, visualized in the beginning of the article, queries on cache were about 10 times faster than similar queries on database. I inserted 2M records into the employee table. Hazelcast data grid could not only be a 2nd level cache but even a middleware between your application and database. If your priority is a performance of queries on large amounts of data and you have a lot of RAM im memory data grid is right solution for you 🙂

JPA caching with Hazelcast, Hibernate and Spring Boot

Preface

In-Memory Data Grid is an in-memory distributed key-value store that enables caching data using distributed clusters. Do not confuse this solution with in-memory or nosql database. In most cases it is used for performance reasons – all data is stored in RAM not in the disk like in traditional databases. For the first time I had a touch with in-memory data grid while we considering moving to Oracle Coherence in one of organizations I had been working before. The solution really made me curious. Oracle Coherence is obviously a paid solution, but there are also some open source solutions among which the most interesting seem to be Apache Ignite and Hazelcast. Today I’m going to show you how to use Hazelcast for caching data stored in MySQL database accessed by Spring Data DAO objects. Here’s the figure illustrating architecture of presented solution.

hazelcast-1

Implementation

  • Starting Docker containers

We use three Docker containers. First with MySQL database, second with Hazelcast instance and third for Hazelcast Management Center – UI dashboard for monitoring Hazelcast cluster instances.

docker run -d --name mysql -p 33306:3306 mysql
docker run -d --name hazelcast -p 5701:5701 hazelcast/hazelcast
docker run -d --name hazelcast-mgmt -p 38080:8080 hazelcast/management-center:latest

If we would like to connect with Hazelcast Management Center from Hazelcast instance we need to place custom hazelcast.xml in /opt/hazelcast catalog inside Docker container. This can be done in two ways, by extending hazelcast base image or just by copying file to existing hazelcast container and restarting it.

docker run -d --name hazelcast -p 5701:5701 hazelcast/hazelcast
docker stop hazelcast
docker start hazelcast

Here’s the most important Hazelcast’s configuration file fragment.

<hazelcast xmlns="http://www.hazelcast.com/schema/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.hazelcast.com/schema/config http://www.hazelcast.com/schema/config/hazelcast-config-3.8.xsd">
     <group>
          <name>dev</name>
          <password>dev-pass</password>
     </group>
     <management-center enabled="true" update-interval="3">http://192.168.99.100:38080/mancenter</management-center>
...
</hazelcast>

Hazelcast Dashboard is available under http://192.168.99.100:38080/mancenter address. We can monitor there all running cluster members, maps and some other parameters.

hazelcast-mgmt-1

  • Maven configuration

Project is based on Spring Boot 1.5.3.RELEASE. We also need to add Spring Web and MySQL Java connector dependencies. Here’s root project pom.xml.


	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>1.5.3.RELEASE</version>
	</parent>
	...
	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-web</artifactId>
		</dependency>
		<dependency>
			<groupId>mysql</groupId>
			<artifactId>mysql-connector-java</artifactId>
			<scope>runtime</scope>
		</dependency>
	...
	</dependencies>

Inside person-service module we declared some other dependencies to Hazelcast artifacts and Spring Data JPA. I had to override managed hibernate-core version for Spring Boot 1.5.3.RELEASE, because Hazelcast didn’t worked properly with 5.0.12.Final. Hazelcast needs hibernate-core in 5.0.9.Final version. Otherwise, an exception occurs when starting application.

	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-data-jpa</artifactId>
		</dependency>
		<dependency>
			<groupId>com.hazelcast</groupId>
			<artifactId>hazelcast</artifactId>
		</dependency>
		<dependency>
			<groupId>com.hazelcast</groupId>
			<artifactId>hazelcast-client</artifactId>
		</dependency>
		<dependency>
			<groupId>com.hazelcast</groupId>
			<artifactId>hazelcast-hibernate5</artifactId>
		</dependency>
		<dependency>
			<groupId>org.hibernate</groupId>
			<artifactId>hibernate-core</artifactId>
			<version>5.0.9.Final</version>
		</dependency>
	</dependencies>
  • Hibernate Cache configuration

Probably you can configure it in several different ways, but for me the most suitable solution was inside application.yml. Here’s YAML configurarion file fragment. I enabled L2 Hibernate cache, set Hazelcast native client address, credentials and cache factory class HazelcastCacheRegionFactory. We can also set HazelcastLocalCacheRegionFactory. The differences between them are in performance – local factory is faster since its operations are handled as distributed calls. While if you use HazelcastCacheRegionFactory, you can see your maps on Management Center.

spring:
  application:
    name: person-service
  datasource:
    url: jdbc:mysql://192.168.99.100:33306/datagrid?useSSL=false
    username: datagrid
    password: datagrid
  jpa:
    properties:
      hibernate:
        show_sql: true
        cache:
          use_query_cache: true
          use_second_level_cache: true
          hazelcast:
            use_native_client: true
            native_client_address: 192.168.99.100:5701
            native_client_group: dev
            native_client_password: dev-pass
          region:
            factory_class: com.hazelcast.hibernate.HazelcastCacheRegionFactory
  • Application code

First, we need to enable caching for Person @Entity.

@Cache(usage = CacheConcurrencyStrategy.READ_WRITE)
@Entity
public class Person implements Serializable {

	private static final long serialVersionUID = 3214253910554454648L;

	@Id
	@GeneratedValue
	private Integer id;
	private String firstName;
	private String lastName;
	private String pesel;
	private int age;

	public Integer getId() {
		return id;
	}

	public void setId(Integer id) {
		this.id = id;
	}

	public String getFirstName() {
		return firstName;
	}

	public void setFirstName(String firstName) {
		this.firstName = firstName;
	}

	public String getLastName() {
		return lastName;
	}

	public void setLastName(String lastName) {
		this.lastName = lastName;
	}

	public String getPesel() {
		return pesel;
	}

	public void setPesel(String pesel) {
		this.pesel = pesel;
	}

	public int getAge() {
		return age;
	}

	public void setAge(int age) {
		this.age = age;
	}

	@Override
	public String toString() {
		return "Person [id=" + id + ", firstName=" + firstName + ", lastName=" + lastName + ", pesel=" + pesel + "]";
	}

}

DAO is implemented using Spring Data CrudRepository. Sample application source code is available on GitHub.

public interface PersonRepository extends CrudRepository<Person, Integer> {
	public List<Person> findByPesel(String pesel);
}

Testing

Let’s insert a little more data to the table. You can use my AddPersonRepositoryTest for that. It will insert 1M rows into the person table. Finally, we can call enpoint http://localhost:2222/persons/{id} twice with the same id. For me, it looks like below: 22ms for first call, 3ms for next call which is read from L2 cache. Entity can be cached only by primary key. If you call http://localhost:2222/persons/pesel/{pesel} entity will always be searched bypassing the L2 cache.

2017-05-05 17:07:27.360 DEBUG 9164 --- [nio-2222-exec-9] org.hibernate.SQL                        : select person0_.id as id1_0_0_, person0_.age as age2_0_0_, person0_.first_name as first_na3_0_0_, person0_.last_name as last_nam4_0_0_, person0_.pesel as pesel5_0_0_ from person person0_ where person0_.id=?
Hibernate: select person0_.id as id1_0_0_, person0_.age as age2_0_0_, person0_.first_name as first_na3_0_0_, person0_.last_name as last_nam4_0_0_, person0_.pesel as pesel5_0_0_ from person person0_ where person0_.id=?
2017-05-05 17:07:27.362 DEBUG 9164 --- [nio-2222-exec-9] o.h.l.p.e.p.i.ResultSetProcessorImpl     : Starting ResultSet row #0
2017-05-05 17:07:27.362 DEBUG 9164 --- [nio-2222-exec-9] l.p.e.p.i.EntityReferenceInitializerImpl : On call to EntityIdentifierReaderImpl#resolve, EntityKey was already known; should only happen on root returns with an optional identifier specified
2017-05-05 17:07:27.363 DEBUG 9164 --- [nio-2222-exec-9] o.h.engine.internal.TwoPhaseLoad         : Resolving associations for [pl.piomin.services.datagrid.person.model.Person#444]
2017-05-05 17:07:27.364 DEBUG 9164 --- [nio-2222-exec-9] o.h.engine.internal.TwoPhaseLoad         : Adding entity to second-level cache: [pl.piomin.services.datagrid.person.model.Person#444]
2017-05-05 17:07:27.373 DEBUG 9164 --- [nio-2222-exec-9] o.h.engine.internal.TwoPhaseLoad         : Done materializing entity [pl.piomin.services.datagrid.person.model.Person#444]
2017-05-05 17:07:27.373 DEBUG 9164 --- [nio-2222-exec-9] o.h.r.j.i.ResourceRegistryStandardImpl   : HHH000387: ResultSet's statement was not registered
2017-05-05 17:07:27.374 DEBUG 9164 --- [nio-2222-exec-9] .l.e.p.AbstractLoadPlanBasedEntityLoader : Done entity load : pl.piomin.services.datagrid.person.model.Person#444
2017-05-05 17:07:27.374 DEBUG 9164 --- [nio-2222-exec-9] o.h.e.t.internal.TransactionImpl         : committing
2017-05-05 17:07:30.168 DEBUG 9164 --- [nio-2222-exec-6] o.h.e.t.internal.TransactionImpl         : begin
2017-05-05 17:07:30.171 DEBUG 9164 --- [nio-2222-exec-6] o.h.e.t.internal.TransactionImpl         : committing

Query Cache

We can enable JPA query caching by marking repository method with @Cacheable annotation and adding @EnableCaching to main class definition.

public interface PersonRepository extends CrudRepository<Person, Integer> {

	@Cacheable("findByPesel")
	public List<Person> findByPesel(String pesel);

}

In addition to the @EnableCaching annotation we should declare HazelcastIntance and CacheManager beans. As a cache manager HazelcastCacheManager from hazelcast-spring library is used.

@SpringBootApplication
@EnableCaching
public class PersonApplication {

	public static void main(String[] args) {
		SpringApplication.run(PersonApplication.class, args);
	}

	@Bean
	HazelcastInstance hazelcastInstance() {
		ClientConfig config = new ClientConfig();
		config.getGroupConfig().setName("dev").setPassword("dev-pass");
		config.getNetworkConfig().addAddress("192.168.99.100");
		config.setInstanceName("cache-1");
		HazelcastInstance instance = HazelcastClient.newHazelcastClient(config);
		return instance;
	}

	@Bean
	CacheManager cacheManager() {
		return new HazelcastCacheManager(hazelcastInstance());
	}

}

Now, we should try find person by PESEL number by calling endpoint http://localhost:2222/persons/pesel/{pesel}. Cached query is stored as a map as you see in the picture below.

hazelcast-3

Clustering

Before final words let me say a little about clustering, what is the key functionality of Hazelcast in memory data grid. In the previous chapters we based on single Hazelcast instance. Let’s begin from running second container with Hazelcast exposed on different port.

docker run -d --name hazelcast2 -p 5702:5701 hazelcast/hazelcast

Now we should perform one change in hazelcast.xml configuration file. Because data grid is ran inside docker container the public address has to be set. For the first container it is 192.168.99.100:5701, and for second 192.168.99.100:5702, because it is exposed on 5702 port.

     <network>
        ...
	<public-address>192.168.99.100:5701</public-address>
        ...
     </network>

When starting person-service application you should see in the logs similar to visible below – connection with two cluster members.

Members [2] {
Member [192.168.99.100]:5702 - 04f790bc-6c2d-4c21-ba8f-7761a4a7422c
Member [192.168.99.100]:5701 - 2ca6e30d-a8a7-46f7-b1fa-37921aaa0e6b
}

All Hazelcast running instances are visible in Management Center.

hazelcast-2

Conclusion

Caching and clustering with Hazelcast are simple and fast. We can cache JPA entities and queries. Monitoring is realized via Hazelcast Management Center dashboard. One problem for me is that I’m able to cache entities only by primary key. If I would like to find entity by other index like PESEL number I had to cache findByPesel query. Even if entity was cached before by id query will not find it in the cache but perform SQL on database. Only next query call is cached. I’ll show you smart solution for that problem in my next article about that subject In memory data grid with Hazelcast.