Performance Comparison Between Spring MVC and Spring WebFlux with Elasticsearch

Since Spring 5 and Spring Boot 2 there is a full support for reactive REST API with Spring WebFlux project. Also project Spring Data systematically includes support for reactive NoSQL databases, and recently for SQL databases too. Since Spring Data Moore we can take advantage of reactive template and repository for Elasticsearch, what I have already described in one of my previous article Reactive Elasticsearch With Spring Boot. Continue reading “Performance Comparison Between Spring MVC and Spring WebFlux with Elasticsearch”

Reactive Elasticsearch With Spring Boot

One of more notable feature introduced in the latest release of Spring Data is reactive support for Elasticsearch. Since Spring Data Moore we can take advantage of reactive template and repository. It is built on top of fully reactive Elasticsearch REST client, that is based on Spring WebClient. It is also worth to mention about support for reactive Querydsl, which can be included to your application through ReactiveQueryPredicateExecutor. Continue reading “Reactive Elasticsearch With Spring Boot”

Elasticsearch with Spring Boot

Elasticsearch is a full-text search engine especially designed for working with large data sets. Following this description it is a natural choice to use it for storing and searching application logs. Together with Logstash and Kibana it is a part of powerful solution called Elastic Stack, that has already been described in some of my previous articles.
Keeping application logs is not the only one use case for Elasticsearch. It is often used as a secondary database for the application, that has primary relational database. Such an approach can be especially useful if you have to perform full-text search over large data set or just store many historical records that are no longer modified by the application. Of course there is always question about advantages and disadvantages of that approach.
When you are working with two different data sources that contain the same data, you have to first think about synchronization. You have several options. Depending on the relational database vendor, you can leverage binary or transaction logs, which contain the history of SQL updates. This approach requires some middleware that reads logs and then puts data to Elasticsearch. You can always move the whole responsibility to the database side (trigger) or into Elasticsearch side (JDBC plugins). Continue reading “Elasticsearch with Spring Boot”